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Abstract. Segregation effects commonly exist in granular mixtures with difference in size, shape or density.
In mixed traffic flow, slow vehicle and fast vehicle, as two types of particles, have different desired speed.
We investigate the segregation along the road in mixed traffic flow by using a symmetric two-lane cellular
automata model. A parameter D, which quantifies the degree of segregation, is defined. We study the
density dependency of the parameter at different randomization probability. Simulation results show that
segregation is more obviously in free flow region. We argue that the overtaking maneuvers have similar
effect as percolation in granular flow.

PACS. 05.50.+q Lattice theory and statistics – 02.50.Ey Stochastic processes – 64.75.+g Solubility,
segregation, and mixing phase separation – 89.90+n Other topics in areas of applied and interdisciplinary
physics

1 Introduction

Nowadays cellular automata (CA) has become an excel-
lent tool for simulating real traffic flow, because its effi-
cient and fast performance when used in computer simu-
lations [1,2]. In CA models, each vehicle is deemed as a
particle, and the nature of the interactions among these
vehicles is determined by the updating rule. In 1992,
Nagel and Schreckenberg proposed the well-known Nagel-
Schareckenberg (NaSch) model [3] for single-lane traffic
flow. Although it is very simple, the NaSch model can
reproduce some real traffic phenomena, such as the occur-
rence of phantom traffic jams and the realistic flow-density
relation (fundamental diagram). The NaSch model is a
minimal model in the sense that any further simplifica-
tion of the model leads to unrealistic behaviors. But in
single-lane CA models only one type of vehicle is consid-
ered, so it can not well describe the real traffic which is al-
ways mixed. Later, Chowdhury et al. [4] first investigated
the mixed traffic system in two-lane model by introduc-
ing lane changing rules. Then overtaking maneuvers which
performed by fast vehicle when hindered by slow vehicle
were brought into CA models. In recent years, much at-
tention have been payed to study the complex dynamics
in mixed traffic by using two-lane CA models [5–12].

Granular mixtures exhibit a variety of intriguing be-
haviors [13]. Poured grains can sediment into regular stri-
ations [14]; shaken grains can spontaneously assemble
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into intricate and localized patterns [15,16]; and tumbled
grains can generate radial, axial, and dynamical segrega-
tion patterns [17–19]. Small differences in size, shape, or
density lead to flow-induced segregation, a phenomenon
without parallel in fluids. Segregation of granular materi-
als is a complex and imperfectly understood phenomenon.

In mixed traffic flow, fast vehicles and slow vehicles
are two types of particles with different maximum speed.
Nagatani first investigated the segregation between lanes
by introducing asymmetric lane-changing rules [20]. In
this paper, we investigate the segregation along the road
in mixed traffic flow by using a symmetric two-lane CA
model, and the configurations of the road and time evo-
lution images are plotted to observe such effect. We also
define parameters to quantify the degree of segregation.
Simulation results show that segregation effects in free
flow region are more obvious than that in congested flow
region. Mechanisms of segregation effect are also studied.
We proposed that the overtaking maneuvers change the
relative positions of fast vehicle and slow vehicle, and this
has similar effect as percolation in granular flow. So seg-
regation in mixed traffic flow occurs.

Mixed traffic system has also been studied in the model
of one-dimensional asymmetric simple exclusion process
(ASEP) [21–23], in which each particle is assigned with
a random hopping probability. The particles with lower
hopping probability are deemed as slow particles, and the
particles with higher hopping probability correspond to
fast particles. If the ratio of slow particles is small in the
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system, phase separation will happen, which may be
viewed as segregation phenomenon. The fast particles will
form platoons behind the slow particle, and large gaps ap-
pear in front of the slow particle. In CA models for single
lane traffic, such behavior will also occur if only a few
slow vehicles exists in the system. In this paper, the ratio
of slow vehicles is quite large in the system we studied
(larger than 0.1), so phase separation does not happen
in single lane model, segregation occurs only when lane
changing and overtaking are possible.

This paper is organized as follows: in Section 2, we
describe the model for the two-lane traffic. The method
to transform the configurations of the road into time evo-
lution image is proposed in Section 3. The parameter d
quantifying the degree of segregation is defined in Sec-
tion 4. Next, the simulation results are reported in Sec-
tion 5. Finally, the conclusion is given.

2 Two-lane traffic model

In this work, we use the well-known basic cellular au-
tomata NaSch model for modelling the forward move-
ments of the vehicles. Next, we briefly recall the defini-
tion of the NaSch model. The NaSch model is a discrete
model for traffic flow. The road is divided into L cells,
which can be either empty or occupied by a vehicle with
a velocity v = 0, 1, ..., vmax. The vehicles move from the
left to the right on a lane with periodic boundary con-
dition. At each discrete time step t → t + 1, the system
update is performed in parallel according to the following
four sub-rules: (1) acceleration: vn → min(vn + 1, vmax);
(2) deceleration: vn → min(vn, dn); (3) randomization:
vn → max(vn − 1, 0) with probability p; (4) position up-
date: xn → xn + vn. Here vn and xn denote the velocity
and position of the vehicle n respectively; vmax is the max-
imum velocity and dn = xn+1−xn−1 denotes the number
of empty cells in front of the vehicle n ; p is the random-
ization probability.

This set of rules control the forward motion of vehicles.
In order to extend the model to multi-lane traffic, one has
to introduce lane-changing rules, which control the paral-
lel motion of vehicles. So in multi-lane models the update
step is usually divided into two sub-steps: in the first sub-
step, vehicles may change lanes in parallel according to
lane changing rules and in the second sub-step the lanes
are considered as independent single-lane NaSch models.

In this work, we adopt the symmetric lane changing
rules, in which both lanes are treated equally. Many lane
changing rules can be found in the literature where a vari-
ety of rules are displayed [5–12]. However, all lane chang-
ing rules consist of two different parts: the security crite-
rion (is it safe to change lane?) and the incentive criterion
(is there a good reason to change lanes?). Here we inves-
tigate the symmetric model proposed by Chowdury et al.
The rules can be described as follows:

dn < min(vn+1, vmax) , dn,other > dn and dn,back > vmax.
(1)

Here dn,other, dn,back denote the number of free cells be-
tween the nth vehicle and its two neighbor vehicles on the
other lane at time t. dn,back > vmax is the security cri-
terion and dn < min(vn + 1, vmax) , dn,other > dn is the
incentive criterion.

The segregation effects are studied in mixed traffic, so
two kinds of vehicles are considered in the simulation, the
fast vehicle with maximum speed vf

max = 5 and the slow
vehicle with maximum speed vs

max = 3. We denote the
ratio of slow vehicles to all vehicles as R.

3 Image acquisition

The digital image obtained in the experiment is usually
analyzed to study the segregation effect of granular mix-
tures. Here the configurations of the two-lane road are
transformed into image by using the method below: the
two-lane road is divided into m parts, and every part con-
tains 2l (l = max(2×1.0/ρ, l0)) cells, so m = L/l. At small
densities, we choose larger l so that there are always vehi-
cles in every part of the road. At larger densities, small l
is selected but not less than l0. In each part, assume that
there are Ns slow vehicles and Nf fast vehicles, then the
composition of the part is represented by a real number
c = (Nf −Ns)/(Nf + Ns). So c = 1.0 denotes that all the
vehicles in the part are fast vehicles; reversely c = −1.0
means that all the vehicles in the part are slow vehicles.
If there are no vehicles in the part, c is set to zero. We
can obtain a one dimensional image with m pixels length
and the deepness of the color is determined by the value
(c + 1)/2, which is between 0 and 1. During the evolution
of traffic flow, we can obtain a time evolution image of the
configurations of the road.

4 The parameters quantifying the degree
of segregation

In two-lane CA model, the vehicles drive in discrete cellu-
lar space, so the positions of each vehicle can be measured
at each time step. For each vehicle, there is a neighbor re-
gion on the two-lane road. This region also has a length
of l which is dependent on the density and the same as
that value in Section 3. The vehicle is at the center of the
region. We define the percent similar as the proportion of
the same type of vehicles in the neighbor region to each
vehicle. The average percent similar of all the slow (fast)
vehicles is defined as the degree of segregation of slow
(fast) vehicles represented by Ds (Df ). And the degree of
segregation of the system is D, which is the average per-
cent similar of all the vehicles. We argue that the larger the
value of D is, the more obvious the segregation effect is.

5 Simulation results

We carry out the simulations of the two-lane traffic model
mentioned in Section 2 on a lattice of 2L sites with pe-
riodic boundary condition. In the initial condition, slow
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Fig. 1. At small density ρ = 0.05, the configurations of the
two-lane road (a) in the initial state; (b) at 2000 time step. The
parameters are R = 0.5 and p = 0.05. The segregation effect
appears quickly and after 2000 time step the configuration of
the road changes little.

vehicles and fast vehicles are well mixed on the two-lane
(Figs. 1a and 3a). Since periodic boundary condition is
considered, the two lanes are taken as two circles. As we
can see in Figures 1 and 3, the inner circle represents the
left lane while the outer circle corresponds to the right
lane. The blue points correspond to the slow vehicles and
the red points to the fast ones. They drive anticlockwise.

We first study the case R = 0.5. Both the configura-
tions of the road and the time evolution images are shown
to see the segregation effect. The parameter l0 = 10 is
used. The road length L = 1000 is selected when drawing
the configurations of the road while L = 10 000 is used
in making the time evolution images. The segregation ef-
fect can be seen more clearly by doing those measures.
Simulation results indicate that L does not influence the
evolution process of traffic flow.

Figure 1 shows the results at density ρ = 0.05. When
fast vehicles are hindered by slow ones, they will try to
overtake slow ones. But slow vehicles may form “plug”
from time to time, then fast vehicles have to drive be-
hind the “plug” until it dissolves. Such process can be
clearly seen in Figure 2. In the beginning, the color is
gray, which means the slow vehicles and the fast vehicles
are well mixed. After about 200 time steps, some “plugs”
are formed on the road. Behind the “plugs”, fast vehi-
cles assemble and a narrow white area appears. In front
of the “plugs”, fast vehicles continue overtaking slow vehi-
cles and leave them behind, so black area expands. As time
proceeding, the segregation effect becomes more obvious
and the gray region gradually disappears.

At ρ = 0.2 both fast vehicles and slow vehicles are
segregated into bands along the road in the stationary
state, but to reach the state takes a much longer evolu-
tion time. The configurations of the road at different time
step (t0 = 0, t1 = 10 000, t2 = 100 000 and t3 = 200 000)
are shown in Figure 3. At time step t1, small bands are
formed along the road; at time step t2, small bands merge
into large bands; and there is only a little difference be-
tween the configuration of the road at time step t2 and
that at time step t3. This indicates that the coarsening
behavior, which is commonly exist in disordered exclusion
models [23], occurs. The time dependence of the degree

Fig. 2. The time evolution image of the configuration of the
road at ρ = 0.05 (thus l = 40) during the time step from 0
to 2000. The parameters are R = 0.5 and p = 0.05. Black
corresponds to c = −1, and white represents c = 1. Each black
area corresponds to a “plug”, so the number of “plugs” is small
at small density.

Fig. 3. At ρ = 0.2, the configurations of the two-lane road. (a)
At t0 = 0 time step (the initial state); (b) At t1 = 10 000 time
step; (c) at t2 = 100 000 time step; (d) At t3 = 200 000 time
step (the stationary state). The parameters are R = 0.5 and
p = 0.05. As time increasing, segregation effect becomes more
obvious, and the evolution time to reach a stationary state is
much longer than that at ρ = 0.05.



4 The European Physical Journal B

Fig. 4. The plot of degree of segregation against time steps.
The parameters are ρ = 0.2, R = 0.5 and p = 0.05.

Fig. 5. The time evolution image of the configurations of the
road at ρ = 0.2 (l = 10) during the period from 200 000 to
201 000 time step. The parameters are R = 0.5 and p = 0.05.
The segregated black and white bands indicate the segregation
of mixed traffic flow.

of segregation is shown in Figure 4. The values of Ds, Df

and D are only slightly different, and they are 0.5 in the
initial state but reach a value of 0.87 in the stationary
state. They first increase quickly, then increase slightly,
and at last approximately maintain at a constant after
about 200 000 time step. Compared to Figure 3, it can be
seen that the parameters Ds, Df and D can really reflect

Fig. 6. The fundamental diagrams of the two-lane CA model
in the case of R = 0.5. At the density range ρ < ρmax the
traffic state is free flow ; beyond ρmax traffic jam exists. Here
ρmax = ρmax,1, ρmax,2 and ρmax,3 when p = 0.05, 0.16 and 0.3,
respectively.

the degree of segregation. In addition, the time evolution
image of the configurations of the two-lane road during
a period of 1000 time steps in stationary state is shown
in Figure 5. The white and black bands indicate a well
segregation of fast and slow vehicles.

Those results indicate that the segregation effect also
exists in mixed traffic flow because fast vehicle and slow
vehicle can be deemed as two kinds of particles with dif-
ferent maximum speed.

In CA models for traffic flow, density ρ and randomiza-
tion probability p are two important parameters (Fig. 6).
As the density increasing, traffic flow first performs free
flow (i.e., traffic in free flow region). When the critical den-
sity is exceeded, traffic is in congested flow region and jams
can occur spontaneously out of homogeneous traffic. The
randomization p has great influence on the lane-changing
frequency in two-lane CA model. So we next investigate
the influence of the parameters ρ and p on the degree of
segregation in the case of R = 0.5. The first 200 000 time
steps are discarded, the value of D is obtained by averag-
ing the last 100 000 time steps.

First, we study the difference between Ds and Df at
different densities when p = 0.05 (inset figure in Fig. 7).
Df is a little larger than Ds when ρ < 0.2. This is because
at small densities, fast vehicles are much more condensed
than slow vehicles (Fig. 1). They almost equal to each
other when ρ ≥ 0.2. Since the difference is small, next we
mainly focus on analyzing the value of D. The density de-
pendence of D with different randomization probability p
is drawn in Figure 7. It shows that D first decreases to
a local minimum value then grows to a local maximum



X.-G. Li et al.: Segregation effect in symmetric cellular automata model for two-lane mixed traffic 5

Fig. 7. The value of D as a function of density ρ in the case
of R = 0.5. The inset figure shows the difference between Ds

and Df when p = 0.05.

value and as the density increasing to congested flow re-
gion, D falls to small values which is still slightly larger
than the initial value of 0.5. Figure 7 also shows that the
values of D perform the same trend at different p. We can
conclude that the segregation occurs in free flow region,
but it is greatly suppressed in congested flow region. As p
decreasing, the transition from free flow to congested flow
occurs at a larger density, accordingly the critical density
corresponding to the local maximum value of D increases.

We know that granular segregation can be driven by
percolation, where smaller particles pass through the holes
created by the larger particles [16]. In two-lane CA mod-
els for mixed traffic, fast vehicles will try to overtake slow
ones when they are hindered. Overtaking maneuvers can
change the relative positions of fast vehicles and slow ve-
hicles. We argue that overtaking maneuvers have similar
effect as percolation in granular flow.

We also investigate the evolution of degree of segrega-
tion in single lane case. It is found D, Ds, and Df remain
unchanged with time. This confirms that the segregation
is caused (or at least can be enhanced) by overtaking.

Next the influence of randomization p on the degree of
segregation is discussed.

– At small densities (ρ < 0.1), the average life time of
“plugs” becomes longer with the decrease of p. There-
fore, the degree of segregation increases with the de-
crease of p.

– With the increase of p, the transition from free flow to
congestion flow occurs at a smaller density. As shown
earlier, when congestion occurs, the segregation effect
is greatly suppressed. Therefore, the degree of segrega-
tion decreases with the increase of p at large densities.

Fig. 8. The value of D as a function of density with different l0
and road length L. The parameters are R = 0.5 and p = 0.05.

– In the intermediate density range 0.1 < ρ < 0.18, the
variation of the degree of segregation D with p is quite
complex. This is a combination effect due to, on the
one hand, life time of a small “plug” decreases with the
increase of p, and on the other hand, two small plugs
may have more chances to merge into one large plug
and the life time of a large plug is much larger than a
small one.

– In the special case of p = 0, segregation does not hap-
pen if initially the fast vehicles and slow vehicles are
well mixed. This is because (i) if ρ > 0.11, then any
successive two slow vehicles form a plug and the plug
will not dissolve [10]. Therefore, the fast vehicles have
no chance to overtake. Consequently, no segregation
happens; (ii) if ρ < 0.11, then no plug will form. As a
result, the segregation does not happen, either.

Now, we investigate the influences of the parameter l0 and
the road length L on the segregation effect. The results
are shown in Figure 8. We can see that the value of D
in case of l0 = 20 is smaller than that in case of l0 =
10 when ρ > 0.1. This is explained as follows. Suppose
that l = 1 is selected, the neighbor region of each vehicle
usually contains only itself, so D keeps a large value in all
cases. D is constant with the value of 0.5 if l = L. This
means larger value of l reduces the value of D. In order to
quantify the degree of segregation, an intermediate value
of l is selected. The road length L does not effect the
segregation effect, except that D decreases at very small
densities when L = 1000 because there are so few slow
vehicles in the system and the “plug” rarely forms.

In real traffic system, the ratio of slow vehicles is usu-
ally small. Now we investigate the case of R = 0.1. The
configurations of the road and the time evolution image
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Fig. 9. The configurations of the two-lane road in the case of
R = 0.1, ρ = 0.2 and p = 0.05. (a) The initial state; (b) the
stationary state (after 200 000 time steps).

Fig. 10. The time evolution image of the configurations of
the road in a time period of 1000 during stationary state. The
parameters are R = 0.1, ρ = 0.2 (l = 10) and p = 0.05.
Narrow black bands indicate that slow vehicles drive together
in stationary state.

are drawn in Figures 9 and 10 respectively. Figure 10
shows that slow vehicles form narrow bands along the
road. In the initial state, slow vehicles are encapsulated
by fast vehicles, and Ds = 0.1, Df = 0.9. But in the final
state, Ds can reach high values and Df is larger than 0.9
in free flow region (Fig. 11). Although the ratio of slow
vehicles is small and the slow vehicles are well separated,
they can drive together and form “plugs” in the final state.
Then the fast vehicles will be hindered by those “plugs”
and the average flux in the case of R = 0.1 is almost the
same as that in the case of R = 1.0 [Fig. 12]. Furthermore,
smaller value of p can enhance the degree of segregation in
the whole density range, because the number of slow ve-
hicles is small and the small plugs are far from each other
and has no chance to merge.

Fig. 11. Comparison of the values of Ds and Df as a function
of density ρ in the case of R = 0.1 at different p.

Fig. 12. Comparison of fundamental diagrams with different
R and p.

6 Conclusion

In mixed traffic flow, the segregation effect also exists. As
two kinds of particles, slow vehicles and fast vehicles segre-
gate into bands along the road. We investigate such effect
in the symmetric two-lane CA model for mixed traffic flow.
In order to quantify the degree of segregation effect, we
define the parameters Ds, Df and D. Simulation results
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indicate that the values of those parameters can really
reflect the degree of segregation effect.

In case of R = 0.5, Df is a little higher than Ds in the
density region ρ < 0.2, but there is almost no difference
when ρ ≥ 0.2. As the density increases, the value of D first
decreases then increases; after a local maximum value is
reached it quickly reduces to low values.

In case of R = 0.1, although slow vehicles are well sep-
arated in the initial condition, they still can drive together
and form “plug” in the final state. This is the reason why
the average flux is almost the same as that in case of
R = 1.0.

We argue that the mechanism of segregation in mixed
traffic flow is overtaking maneuver and it has the similar
effect as percolation in granular flow.
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